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Abstract—The results of two techniques for optical carrier re-
generation and wavelength reuse using semiconductor optical am- ONW
plifiers (SOAS) are presented in this paper. The main objective is
to recover an optical carrier by erasing its amplitude modulation. p
The first technique employs gain compression of deeply saturated base
SOAs. The second technique uses a feed-forward approach, where
a delayed current signal is injected into the SOA with the same
shape of the incoming optical pulse. The second technique could
be capable to recover the optical carrier with less than 3-dB noise.

However, it was observed that the SOA gain recovery time limits Fig. 1. Definitions of optical pulse levels: OAN and ONW.
the maximum usable bit rate. Theoretical simulation showed good
agreement with experimental results.

1 Gbit/s. In addition, a description of the gain-compression tech-
nique and feed-forward approach employing SOAs with block
diagrams of the optical circuits to be employed is presented.

Index Terms—Optical carrier regeneration, optical pulse
reshaping, optical wavelength reuse, semiconductor optical
amplifier.

Il. GAIN-COMPRESSIONTECHNIQUE
|. INTRODUCTION o . ) . .
A digital AM optical carrier has two power logical levels:i.e.,

T HE use of a cascade of semiconductor optical amplifiefge jow-logic levelP,,.. and the high-logic leveP,.,, as shown
(SOASs) has been proposed to support bypass routing, dﬁqtqtig_ 1. The optical pulse ER can be defined as
receiving, data extinction, and modulation in wavelength divi-

sion multiplexing (WDM) optical networks [1]. The data extinc- (Piop — Paark)
tion is the removal of the received data signals from the optical (Phase — Pdark)}
carrier. In this way, the same wavelength channel could imme-

diately be wavelength reused after the data-extinction proce¥$€ré Eiop — Paark) is the most prevalent high-logic level and
with a possible improvement of the network switch efficiencyt/base — Paark) iS the most prevalent low-logic level.

However, because of the large extinction ratio (ER) of the in- Data extinction by gain compression is based on the satura-
coming pulses, the gain-compression effect cannot erase Q@ Property of an optical amplifier where the low-logic-level
data completely, and the optical output carrier still have ampfilgnal has a higher gain than that of the high-logic-level signal.
tude transitions. Alternatively, this paper proposes a technigfiérefore, when an AM signal is amplified, the ER decreases.
for data extinction and optical carrier regeneration by usinqur'i“S is even more evident in heavily saturated SOAs. There-
SOA with feed-forward current-injection (FFCI) gain controfore, if the AM signal crosses a sequence of heavily saturated
[2]. Simulation and experimental results for both gain compre@ptic"’“ amplifiers, the ER after the last amplifier is expected to

sion and FFCI SOAs are presented for bit rates from 10 Mbit/s§ considerably close to 0 dB in such a way that it would be
hard to distinguish between both the low- and high-logic levels.
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Fig. 3. Simulated and measured optical output pulses at 70 Mbit/s after SOA
R N B cascade gain compression.

50
- [ in a 30-GHz bandwidth optical-communication analyzer
i . =5 (HP-83480A/HP-83482A). The optical spectrum was also
i ) W monitored. The bit rate was varied from few megahertz to
3 Ghit/s.
0 T In order to theoretically analyze the pulse propagation be-
time havior of an SOA, the formulation of Agrawal and Olsson [4]
(b) has been used. Discrete numerical time steps were set for the
Fig. 2. (a) Experimental setup for testing data erasing with SOA galiife-gain variation and the fourth-order Runge—Kutta method
compression. (b) Optical input stream simulated by SGPs with shapgas applied to solve the rate equations with signal variation
parameters of 2, 5, and 15. along the longitudinal direction of the SOA active region. The
following SOA active region parameters have been used at 1550
values could be achieved with the faster switching propertiesion for the theoretical analysis [4]: refractive index3.4, guide
multiquantum well (MQW) SOAs [3]. In contrast, an erbium<confinement factor= 0.4, transversal gais 2 x 1071 cn?,
doped optical amplifier would have a very large ONW value (iparrier concentration at transpareney2 x 10~** cm=2, satu-
the order of 20Q:s) due to its very long carrier lifetime. ration energy= 4.5 pJ, attenuation coefficieat 20 /cm, and a
The proposed gain-compression scheme is shown in Fig. 2@lume equal to 1.4 0.2x 350.m?, respectively. Other theo-
It uses an external modulated optical carrier as the input kettical values were linewidth enhancement factos; trapping,
stream signal and a cascade of three SOAs to enable operasipbntaneous, and Auger carrier recombination coefficients [5],
in deep saturation. The AM optical input carrier was simulatd@] given by A = 5 x 107 s7%; B = 5 x 1071 cm?®/s; and
by a super Gaussian pulse (SGP) stream expressed by C = 7.5 x 1072 cmb/s. The SOA insertion loss was assumed
to be equal to 3 dB, the SOA cavity loss was assumed to be
Pase St 1 2F equal to 3 dB, and the facet reflection was assumed to be equal
P(t) = Prase + Prop <1 - m) eXp— {‘) < )} to 10~*. The above parameters furnish a theoretical carrier life-
(2) time at transparency of 740 ps and a current to achieve trans-
whereP is the envelope powet,is the time, T is the SGP bit parency of 42.3 mA. It is important to note that the amplitude
stream period, an# is the SGP format. As an illustration, SGPspontaneous noise (ASE) was disregarded in the analysis since
with FR = 10 dB, B,... = 10 uW, andF" values of 2, 5, and only large optical pulses are employed in the experiments shown
15 are shown in Fig. 1(b). here.

The experimental setup used three SOAs (E-TEK-HSOA- To test the data extinction with gain compression, an input
1550), kept under temperature control (0.05 K) and biasedlise bit stream with the following parameters was applied to
with a precise dc current source for optimum small-sign#éhe circuit shown in Fig. 2: bit rate of 70 Mbit/8},,.c = 40 W,
gain. The cascade was followed by a 47-dB fiber isolatdr,,, = 138 uW, andER = 5.4 dB. In order to obtain deep
(0.8-dB insertion loss) and an optical bandpass filter (4-dBOA saturation, the SOAs in sequence (Fig. 2) were biased at
insertion loss). Polarization control before each SOA wds0, 45, and 30 mA, leading to fiber-to-fiber measured SOA
also provided. All connectors had a return loss better thamall-signal gains of 11.7, 3.7, and 1.3 dB, respectively. In order
55 dB. The optical carrier (1550 nm, 2 mW) was generatéd simulate the input bit stream, an SGP with = 15 was
by an external cavity laser (Photonetics-Nanotunic) and affitted to the experimental input pulse. Also, a 4.8-dB insertion
plitude-modulated by a Mach-Zehnder intensity modulattwss was added to simulate the isolator and optical bandpass
(UTP-APE MZM-3.0 GHz), driven by both a pulse generatdilter losses. The simulated and measured output pulse streams
with pseudorandom binary sequence (HP-8133A) and a diter gain compression in the SOA cascade are shown in Fig. 3.
source (ER adjustment). The output pulses were analyZElde experimental output pulses achieved the valudd,gf =

optical power (uW)

T 2
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455 pW, P, = 785 uW, andER = 2.4 dB. The simulated microwave  time

values were 410 and 8Q@WV, with an ER = 2.9 dB, respec- amlifier delay time

tively. There is good agreement between measured and cal ~ . desri'g,a,g;'e

lated ER. The experimental and simulated ONW are simile b3

with a value of 850 ps. This value is slightly larger than th v —]‘,/ Vee(t)
optical carrier lifetime. The measured OAN is higher (smallel ac ]

than the simulated OAN during the pulse built up (decay). Tk . hoto- voltage fo
differences might be attributed to approximations in the theore  zpie ‘opﬁcal converter It ! RF

very high levels of optical signals are required for data extin input ——
tion in AM modulated optical carriers using the SOA gain-com coupler
pression technique. However, our experiments have shown triau

if we tried to decrease the ER by an SOA operation in deep Saly. 4. Block diagram of the SOA with FFCI.
uration, there was an increase in the OAN. In addition, an SOA
with much lower carrier lifetime would be necessary to achieveI thi v the t i f the detected optical sianal
low values of OWN if the bit streams are higher than 500 Mbit/s. N this way, only the transitions ot the detected optical signa
Therefore, the complete optical erasing by gain compressi%{qe amplified, and an RF voltagé:r is generated. It can be
might not be obtained by employing a present-day SOA due%(pressed by
its thermal-limited maximum optical power density and its fi-

nite carrier lifetime.

ical model such as not to consider second-order derivatives. & fiber PR
Additional simulation results (not shown here) indicate the =~ o) ) output
adjusted

length
fiber

Ver = K[P(t+6)] (3)

. FEED-FORWARD APPROACH whereK is a con;tanF th:?\t erends on the photodetector, the
_ . o . microwave amplifier circuit” is the optical power of (3) , and
An alternative way to provide data extinction might need js the adjustable time delay.

some kind of synchronous active optical gain control. One The other part of the incoming optical signal of Fig. 4 was
way to implement such an idea is to use an SOA with FFbupled into the SOA active region. A proper time delay com-
gain control [2]. The technique consists of modulating thgensation was provided (sliding line and adjusted fiber length)
bias current of an SOA with an electrical current Slgnal Wh0$ﬁ order to set the value of close to zero. This value pro-
shape matches that of the amplitude-modulated optical carigdes the synchronization between the feed-forward current and
being simultaneously coupled into the active region of theie optical pulse amplification process, ensuring that the SOA
SOA. However, the electrical injected current should havegain changes in a opposite way in relation to the optical input
phase shift of 180in relation to the optical signal. One waysignal-intensity variation. The technique results in an increase
of providing the required shape matching and the"1@tase (decrease) of the SOA gain in relation to the negative (positive)
shift is by converting a sample of the incoming optical pulsgifference between the optical signal and its average component.
into an electronic signal and inverting this signal. This curfhe overall effect yields an equalization of the pulse transitions
rent-converted electronic signal is then feed-forwarded into thethe output of the feed-forward circuit and an ER close to 1

SOA through its bias current, provided that the optical signgB can be achieved for the optical output bit stream. The SOA
and the inverted current signal are synchronized in relation fig€d-forward injected curred is given by

each other. The signal synchronization leads to an interesting

effect. As the pulse rises toward its high level, the current pulse Irp(t) = G (Ve — Vrr) 4)

moves toward its minimum. This results in a lower overall

SOA gain as the carrier population decreases due to a smaléere is the transcondutance of the voltage-to-current con-

current pulse injection and higher photon population. Howevererter, V. is the bias voltage, andgr is the RF voltage.

for lower optical pulse levels, the opposite effect occurs andlIn order to test both the FFCI scheme and the simulation soft-

the SOA gain rises from its average value. Therefore, higheare, an input signal with very low ER was generated. The input

optical signal levels will be amplified with a lower optical gainpulse parameters were: bit rate of 26 MbitFsase = 5 W,

and lower level signals with higher SOA gain. In this waypP,,, = 174 uW, and ER equal to 15.4 dB. The SOA polariza-

the ER of the resulting optical pulse will be close to 1 dB if &ion current and the microwave amplifier gain were adjusted for

convenient amount of feed-forward current is injected into threptimum FFCI performance and the output pulse-stream wave-

SOA terminal. forms are shown in Fig. 5. The experimental output pulse pa-
The FFCI scheme is presented in Fig. 4. The experimentameters had’,.sc = 6 pW, Pop = 9 pW, andER = 1.8 dB.

optical AM carrier was generated as described in Section Il arlbwever, the measured OAN levels are very high in this case,

applied to the feed-forward SOA circuit of Fig. 4. Part of the opand they appear at the edge of the optical pulse transitions. To

tical signal was photo-detected, generating an electronic sigeahulate the optical input pulses, SGP with= 20 was em-

that was amplified and fed into the SOA (E-TEK, HSOA-1550ployed. The results, displayed in Fig. 5, show that the simulated

by a high-speed voltage-to-inverted-current converter. It is imutput pulses are very close to the measured pulses. However,

portant to note that the photodetector circuit cuts off any dc comde to the SGP approximation, the time lags between the over-

ponent. shoots are different for simulated and measured pulse streams.
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Fig. 7. OAN versus bit stream rate for SGP form of 2, 5, and 15.

Data extinction was simulated from 1 Mbit/s to 1 Gbit/s. The
correspondent OAN theoretical values are shown in Fig. 7. It
is interesting to note that, for each SGP shape paranéter
there is a bit rate where the OAN has a minimum value below
50%. The bit rate where the OAN attains its minimum value
is a function of the input pulse rise time and the SOA carrier

lifetime. The maximum bit rate that could be achieved with the
U L FFCI technique is limited by the SOA carrier lifetime, and is
equal to 1 Gbit/s for the simulated SOA.
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Fig. 6. Input and output optical bit stream pulse at 200 Mbit/s, after a IV. CONCLUSIONS

feed-forward SOA with additional impulse injection. . . ) )
Two SOA-based techniques for optical carrier regeneration

) ) ~ with the partial extinction of the optical AM-modulation have
The OAN levels can be decreased if the FFCl is combinggben presented in this paper. The first technique uses the gain-

with an appropriate currentimpulse. The currentimpulse shoylgmpression property in a dc-biased SOA and the second incor-
be applied in the SOA during every optical pulse built-up trafsorates a current impulse injection generated by a feed-forward
sition. In the following, the current impulse is obtained by exscheme. The last technique can provide a much better optical
tracting the time derivative of the RF voltage, as depicted {yrier recovery. However, overshoot noise exists and represents
Fig. 4. It can be expressed by the main drawback for a complete regeneration of the optical

carrier. The employed SOA has a carrier lifetime at transparency

of 740 ps, and operation at several gigabits per second would
®) need much faster SOAs.

In() = — <Q agff)

wherelp is the current impulse arid is an adjustable constant
of the voltage-to-current converter. Its important to note that,
during an entire pulse periodp will have a zero mean value
with negative and positive impulses. By using an RF rectifier
circuit, it is possible to apply only the negative impulse to the
SOA during the optical pulse built-up transition. In this way, a 2]
substantial decrease of the OAN can be obtained.

For every bit rate, a proper choice Af, 5, and$2 lead to a ggrggain,"Microwave Opt. Technol. Lettvol. 21, no. 1, pp. 39-42, Apr.
opt_imum OAN format. Th_e Sim_UIated results are presented forj3; ;3 w. wiesenfeld, A. H. Gnauck, G. Raybon, and U. Koren, “High-speed
an input signal at 240 Gbit/s, with,,s. = 10 4W, F' = 2, and multiple-quantum-well optical power amplifiedf ZEE Photon. Technol.
ER = 10 dB. Typical input and output bit streams are shown __ Lett, vol. 4, pp. 708-711, July 1992. .

. . b ted that the outout ER is much closer to [4] G. P. Agrawal ano! N. A. Olss_on, Sz_alf-phase modulation gnd spectral
in Fig. 6. It can e_ note X p i broadening of optical pulses in semiconductor laser amplifieEFE

0 dB than the previous results of Fig. 3 and the OAN is smaller  J. Quantum Electronvol. 25, pp. 2297-2306 , Nov. 1989.

than those presented in Fig. 5. In addition, in this particular case/®! ﬁ-oz-té%a"gg%”d N. K. Dutteemiconductor Lasers New York: Van

the output OAN value has been decreased to 47% of the meapy ' '

. H. Ghafouri-Shiraz,Fundamentals of Laser Diode AmplifiersNew
optical output power level. York: Wiley, 1996.
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